Tetrahedron Letters No.25, pp. 2075-2076, 1965. Pergamon Press Ltd. Printed in Great Britain.

THE STRUCTURE OF MUSCAZONE

H.Fritz, A.R.Gagneux & R.Zbinden

J.R. Geigy S.A., Basle

```
and
```

C.H. Eugster

Department of Organic Chemistry

University of Zurich, Switzerland.

(Received 26 April 1965)

Based on the data given below, structure ① is postulated for "muscazone", a novel constituent of <u>Amanita muscaria</u>, isolated by Eugster, Müller and Good. ⁽¹⁾

The NMR spectrum in D_2^0 displays doublets at T = 2.98 (1H) and T = 5.16 (1H) with J-values of 0.7 cps, strongly indicating allylic coupling in $-CH=c^{-1}_{CH}$.

In conc. $H_2SO_{l_1}$ the -CH peak ($T \sim 4.4$) is split into a quartet ($J \sim 6 \text{ cps}$). In addition, a broad \mathcal{H} -doublet ($J \sim 6 \text{ cps}$) appears at $T \sim 2.75$, proving the existence of $-CH - NH_3^{\oplus}$. The doublet splitting ($J \sim 2 \text{ cps}$) of the olefinic proton signal at $T \sim 2.38$ is due to a vicinal \mathcal{H} whose peak coincides with that of H_2SO_{h} , but is discernible at

2075

T = 0.36 in CF_COOH solution. As expected the 2 cps and 6 cps splittings are not observed in conc. D_2SO_4 . These results lead to partial structure (2).

According to potentiometric titration, muscazone possesses a basic group B and an acidic group AH with pK_{MCS}^* values ⁽²⁾ of 8.23 and ~ 3.0, respectively. Thus, in neutral solution, the molecule is essentially zwitterionic with EH^{\oplus} corresponding to $-NH_3^{\oplus}$, found by NMR. The relatively low pK ⁽³⁾ of the acid group together with IR bands at 6.25 μ and 7.25 μ imply an α -amino acid moiety (2, X = COO^{Θ}). At this point one C and two 0-atoms of the molecular formula $C_5H_6N_2O_4$ still have to be accounted for. An IR-band (KBr) at 5.75 μ calls for a C=0 group, leaving only **()** and **(3)** as possible structures.

The UV-spectrum (pH 2-7: $\lambda_{max} = 212 \text{ mµ}$, $\epsilon = 8700$; pH 12: $\lambda_{max} = 220$, $\epsilon = 7500$) lacks significant absorption at about 250 mµ required by \Im . We therefore conclude that muscazone has structure \Im .

References

- C.H. Eugster, G.F.R. Müller and R. Good, <u>Tetrahedron Letters</u> 23, 1813
 W. Simon, E. Kováts, L.H.Chopard-dit-Jean and E. Heilbronner, (1965)
 <u>Helv. Chim. Acta</u> 37, 1872 (1954)
- E.J. Cohn and J.T. Edsall, "Proteins, Amino Acids and Peptides", Reinhold Publ. Corp., New York, 1943.